İrrasyonel üslü bir irrasyonel sayı rasyonel olabilir

Teorem : a ve b olarak öyle iki irrasyonel sayı var mıdır ki  bª  bir rasyonel sayı olsun ?

Evet vardır.

Örnekli Kanıt  : √10 ve log(4) irrasyonel sayılardır ve   √10 log(4) = 10log(2) = 2 olup rasyoneldir.

Kanıt 2 :

√2 ‘nin bir irrasyonel sayı olduğunu biliyoruz.

a =b= √2 olsun , eğer √2^√2( √2 üssü √2) bir rasyonel sayı ise zaten durumu karşılar.

Bu durumda  diyelim ki √2^√2 bir irrasyonel sayı, o halde b=√2^√2 alabiliriz. Böylece bª= (√2^√2)^√2 = √2^2 =2 olacaktır ve bu bir rasyonel sayıdır. Bu durumda teorem kanıtlanmış olur.

Not: √2 üssü √2 bir irrasyonel sayıdır. Bu kanıt (√2^√2)’nin rasyonel olduğunu göstermez. Bakınız ;

Gelfond–Schneider theoremi

If α and β are algebraic numbers with α0,1 and β irrational then α^β is a transcendental number.

Reklamlar

The URI to TrackBack this entry is: https://aritmetik.wordpress.com/2017/05/01/irrasyonel-uslu-bir-irrasyonel-sayi-rasyonel-olabilir/trackback/

RSS feed for comments on this post.

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Çıkış  Yap / Değiştir )

Connecting to %s

%d blogcu bunu beğendi: